

BSS84

P-channel enhancement mode vertical D-MOS transistor Rev. 04 — 17 July 2007 Product data

Product data sheet

Product profile

1.1 General description

P-channel enhancement mode vertical D-MOS transistor in a SOT23 Surface-Mount Device (SMD) package.

1.2 Features

- Low threshold voltage
- High-speed switching
- Direct interface to CMOS and Transistor-Transistor Logic (TTL)
- No secondary breakdown

1.3 Applications

■ Line current interrupter in telephone sets ■ Relay, high-speed and line transformer drivers

1.4 Quick reference data

- $V_{DS} \le -50 \text{ V}$
- \blacksquare R_{DSon} \leq 10 Ω

- $I_D \le -130 \text{ mA}$
- Arr P_{tot} \leq 250 mW

Pinning information

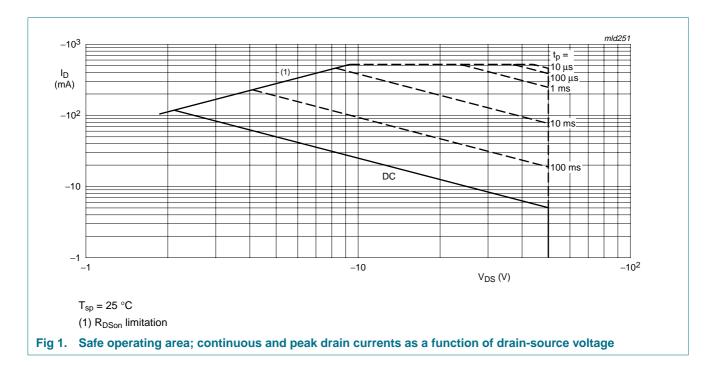
Table 1. **Pinning**

Pin	Description	Simplified outline	Symbol
1	gate (G)	<u> </u>	
2	source (S)		D
3	drain (D)	1	G
			001aaa025

P-channel enhancement mode vertical D-MOS transistor

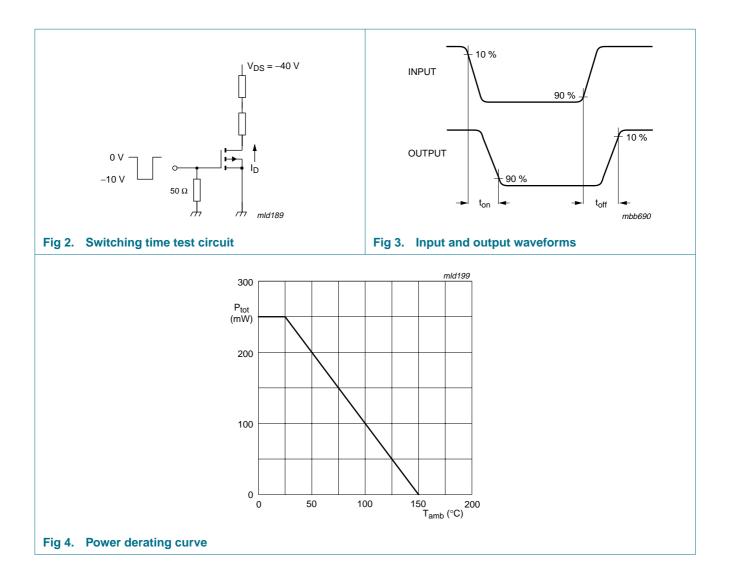
3. Ordering information

Table 2. Ordering information


Type number	Package		
	Name	Description	Version
BSS84	TO-236AB	plastic surface-mounted package; 3 leads	SOT23

4. Limiting values

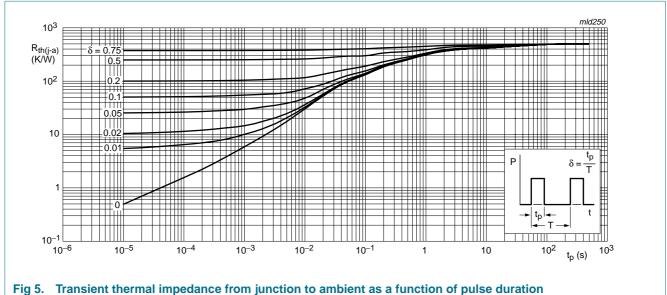
Table 3. Limiting values


In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage	$25 {}^{\circ}\text{C} \le T_j \le 150 {}^{\circ}\text{C}$	-	-50	V
V_{GS}	gate-source voltage		-	±20	V
I_D	drain current	$T_{sp} = 25 ^{\circ}\text{C}$; $V_{GS} = -10 \text{V}$; see Figure 1	-	-130	mΑ
		$T_{sp} = 100 ^{\circ}\text{C}; V_{GS} = -10 ^{\circ}\text{V}$	-	-75	mΑ
I_{DM}	peak drain current	T_{sp} = 25 °C; pulsed; $t_p \le 10 \mu s$; see Figure 1	-	-520	mΑ
P _{tot}	total power dissipation	T _{sp} = 25 °C; see <u>Figure 4</u>	-	250	mW
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-65	+150	°C

BSS84_4 © NXP B.V. 2007. All rights reserved.

P-channel enhancement mode vertical D-MOS transistor


P-channel enhancement mode vertical D-MOS transistor

Thermal characteristics

Table 4. **Thermal characteristics**

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient	see Figure 5	<u>[1]</u> _	-	500	K/W

[1] Mounted on a printed-circuit board; vertical in still air

P-channel enhancement mode vertical D-MOS transistor

6. Characteristics

Table 5. Characteristics

 $T_j = 25 \,^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static ch	naracteristics					
V _{(BR)DSS}	drain-source breakdown voltage	$I_D = -10 \mu A; V_{GS} = 0 V$				
		T _j = 25 °C	-50	-	-	V
V _{GS(th)}	gate-source threshold voltage	$I_D = -1 \text{ mA}$; $V_{DS} = V_{GS}$; see Figure 10				
		T _j = 25 °C	-0.8	-	-2	V
		T _j = −55 °C	-	-	-1.8	V
I _{DSS}	drain leakage current	$V_{DS} = -40 \text{ V}; V_{GS} = 0 \text{ V}$				
		T _j = 25 °C	-	-	-100	nA
		$V_{DS} = -50 \text{ V}; V_{GS} = 0 \text{ V}$				
		T _j = 25 °C	-	-	-10	μΑ
		T _j = 125 °C	-	-	-60	μΑ
I _{GSS}	gate leakage current	$V_{GS} = \pm 20 \text{ V}; V_{DS} = 0 \text{ V}$	-	-	±100	nA
R_{DSon}	drain-source on-state resistance	$V_{GS} = -10 \text{ V}; I_D = -130 \text{ mA}; \text{ see } \frac{\text{Figure 7}}{\text{and } 9}$				
		T _j = 25 °C	-	6	10	Ω
Dynamic	characteristics					
Y _{fs}	transfer admittance	$V_{DS} = -25 \text{ V}; I_{D} = -130 \text{ mA}$	50	-	-	mS
C _{iss}	input capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = -25 \text{ V}; f = 1 \text{ MHz};$	-	25	45	pF
Coss	output capacitance	see Figure 11	-	15	25	pF
C _{rss}	reverse transfer capacitance		-	3.5	12	pF
t _{on}	turn-on time	$V_{DS} = -40 \text{ V}; V_{GS} = 0 \text{ V to } -10 \text{ V};$ $I_D = -200 \text{ mA}; \text{ see } \frac{\text{Figure 2}}{\text{MS}} = \frac{3}{100} \text{ M};$	-	3	-	ns
t _{off}	turn-off time	$V_{DS} = -40 \text{ V}; V_{GS} = -10 \text{ V} \text{ to } 0 \text{ V};$ $I_D = -200 \text{ mA}; \text{ see } \frac{\text{Figure 2}}{\text{Joseph Model}} \text{ and } \frac{3}{\text{Joseph Model}}$	-	7	-	ns

P-channel enhancement mode vertical D-MOS transistor

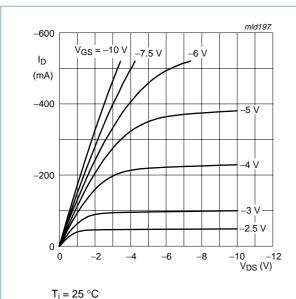
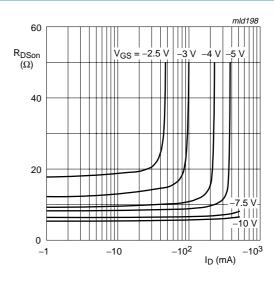



Fig 6. Output characteristics: drain current as a function of drain-source voltage; typical values

T_i = 25 °C

Fig 7. Drain-source on-state resistance as a function of drain current; typical values

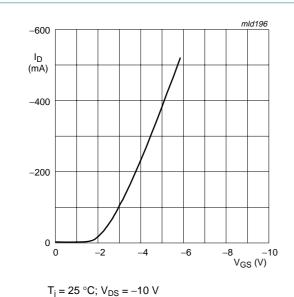
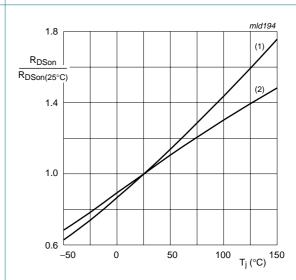



Fig 8. Transfer characteristics: drain current as a function of gate-source voltage; typical values

(1) $I_D = -130 \text{ mA}$; $V_{GS} = -10 \text{ V}$

(2) $I_D = -20 \text{ mA}$; $V_{GS} = -2.4 \text{ V}$

Fig 9. Normalized drain-source on-state resistance factor as a function of junction temperature

BSS84_4 © NXP B.V. 2007. All rights reserved.

P-channel enhancement mode vertical D-MOS transistor

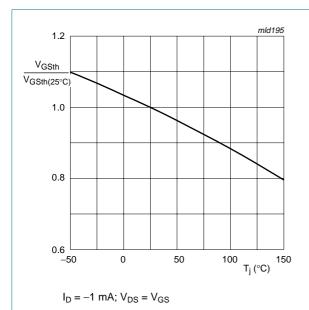
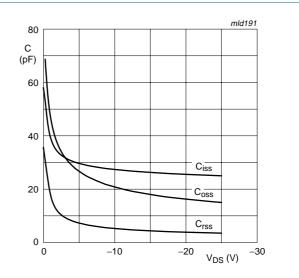



Fig 10. Gate-source threshold voltage as a function of junction temperature

 $V_{GS} = 0 V$; f = 1 MHz

Fig 11. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

P-channel enhancement mode vertical D-MOS transistor

7. Package outline

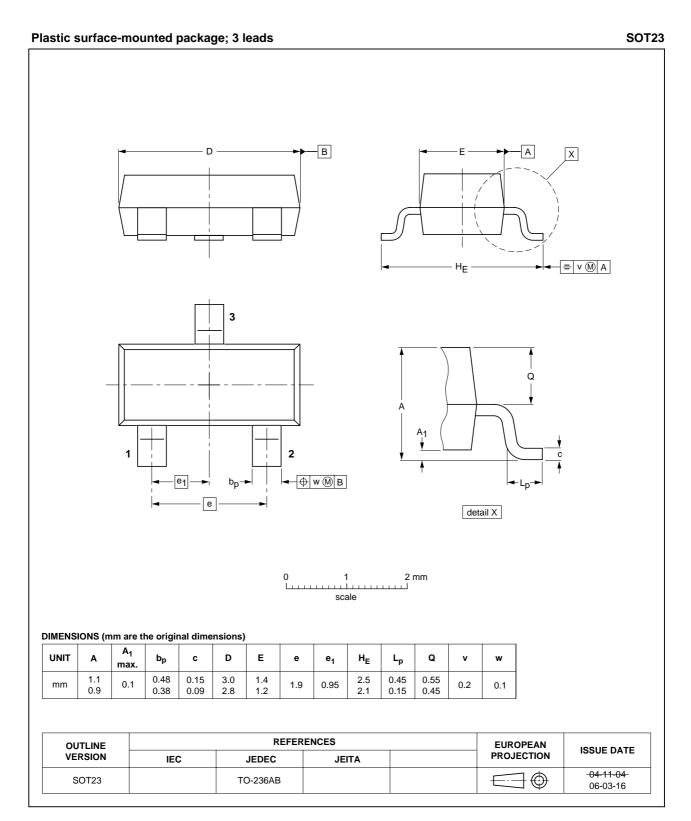


Fig 12. Package outline SOT23 (TO-236AB)

© NXP B.V. 2007. All rights reserved.

P-channel enhancement mode vertical D-MOS transistor

8. Revision history

Table 6. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BSS84_4	20070717	Product data sheet	-	BSS84_3
Modifications:		of this data sheet has been red f NXP Semiconductors.	esigned to comply v	vith the new identity
	 Legal texts h 	nave been adapted to the new	company name whe	re appropriate.
	 Marking cod 	e has been removed.		
BSS84_3 (9397 750 11693)	20030804	Product specification	-	BSS84_2
BSS84_2 (9397 750 02333)	19970618	Product specification	-	BSS84_1
BSS84_1	19950407	Product specification	-	-

P-channel enhancement mode vertical D-MOS transistor

9. Legal information

9.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

10. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

© NXP B.V. 2007. All rights reserved.

P-channel enhancement mode vertical D-MOS transistor

11. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications 1
1.4	Quick reference data 1
2	Pinning information 1
3	Ordering information 2
4	Limiting values 2
5	Thermal characteristics 4
6	Characteristics 5
7	Package outline 8
8	Revision history 9
9	Legal information 10
9.1	Data sheet status
9.2	Definitions
9.3	Disclaimers
9.4	Trademarks 10
10	Contact information 10
11	Contents 11

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

led by © NXP B.V. 2007.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 17 July 2007 Document identifier: BSS84_4

